
A Scalable Data Analytics Algorithm for Mining
Frequent Patterns from Uncertain Data

PAKDD-SDA 2014: Paper 11

Abstract. With advances in technology, massive amounts of valuable
data can be collected and transmitted at high velocity in various scien-
tific, biomedical or engineering applications. Hence, scalable data analyt-
ics tools are in demand for analyzing these data. For example, scalable
tools for association analysis help reveal frequently occurring patterns
and their relationships, which in turn lead to intelligent decisions. While
a majority of existing frequent pattern mining algorithms—including FP-
growth—handle only precise data, there are situations in which data are
uncertain. In recent years, researchers have paid attention to frequent
pattern mining from uncertain data. UF-growth and UFP-growth are
examples of tree-based algorithms for mining uncertain data. However,
their corresponding tree structures can be large. Other tree structures
for handling uncertain data may achieve compactness at the expense
of loose upper bounds on expected supports. To solve this problem, we
propose (i) a compact tree structure that captures uncertain data with
tighter upper bounds than aforementioned tree structures and (ii) a scal-
able data analytics algorithm that mines frequent patterns from our tree
structure. Experimental results show the tightness of bounds to expected
supports provided by our algorithm.

Keywords: Association analysis, frequent patterns, pattern discovery,
tree structures, uncertain data

1 Introduction

Since the advent of frequent pattern mining [1], numerous studies have been
conducted which explore mining frequent patterns (i.e., frequent itemsets) from
precise data such as databases of supermarket transactions [11]. Mining for other
interesting patterns such as skyline patterns [18] or permission request patterns
[7] has also been studied. In cases where the source data is not static, frequent
patterns have been mined from sliding windows in data streams [8, 13, 17]. In
addition, frequent patterns can be used as input to other processes such as
dimensionality reduction on databases [10].

Users definitely know whether an item is present in, or is absent from, a
transaction in databases of precise data. However, there are situations in which
users are uncertain about the presence or absence of items [3–5, 13, 15, 16, 20].
For example, a meteorologist may suspect (but cannot guarantee) that severe
weather phenomena will develop during a thunderstorm. The uncertainty of such
suspicions can be expressed in terms of existential probability. For instance, a
thunderstorm may have a 60% likelihood of generating hail, and only a 15%

1

2 PAKDD-SDA 2014: Paper 11

likelihood of generating a tornado, regardless of whether or not there is hail.
With this notion, each item in a transaction tj in databases containing precise
data can be viewed as an item with a 100% likelihood of being present in tj .

To handle uncertain data, theU-Apriori algorithm [6] was proposed in PAKDD
2007. As an Apriori-based algorithm, U-Apriori requires multiple scans of un-
certain databases. To reduce the number of database scans (down to two), the
tree-based UF-growth algorithm [14] was proposed in PAKDD 2008. In order to
compute the exact expected support of each pattern, paths in the correspond-
ing UF-tree are shared only if tree nodes on the paths have the same item
and same existential probability. Hence, the UF-tree may be quite large when
compared to the FP-tree. In an attempt to make the tree compact, the UFP-
growth algorithm [2] groups similar nodes (with the same item x and similar
existential probability values) into a cluster. However, depending on the clus-
tering parameter, the corresponding UFP-tree may be as large as the UF-tree
(i.e., no reduction in tree size). Moreover, because UFP-growth does not store
every existential probability value for an item in a cluster, it returns not only
the frequent patterns but also some infrequent patterns (i.e., false positives). In
PAKDD 2013, the PUF-growth algorithm [16] was proposed to addresses some of
the deficiencies of the UF-tree and UFP-tree. PUF-growth utilizes a concept of
an upper bound to expected support together with much more aggressive path
sharing to yield a smaller tree structure. Moreover, as alternatives to trees, hy-
perlinked array structures were used by the UH-Mine algorithm [2], which was
reported [19] to outperform UFP-growth.

In this paper, we study the following questions: Can we further tighten the
upper bound on expected support (e.g., lower than the PUF-tree)? Can the
resulting tree be as compact as the FP-tree? How would frequent patterns be
mined from such a tree? Our key contributions of this paper are as follows:

1. a branch-level item prefix-cap tree (BLIMP-tree), which can be as com-
pact as the original FP-tree; and

2. a scalable mining algorithm (namely, BLIMP-growth, which is guaranteed
to find all and only those frequent patterns (i.e., no false negatives and no
false positives) from uncertain data.

The remainder of this paper is organized as follows. The next section presents
background and related works. We then propose our BLIMP-tree structure and
BLIMP-growth algorithm in Sections 3 and 4, respectively. Experimental results
are shown in Section 5, and conclusions are given in Section 6.

2 Background and Related Works

In this section, we first give some background information about frequent pattern
mining of uncertain data (e.g., existential probability, expected support), and we
then discuss some related works.

A Scalable Data Analytics Algorithm 3

Fig. 1. The UF-tree for the database shown in Table 1 when minsup=1.1

2.1 Existential Probability and Expected Support

Let (i) Item be a set of m domain items and (ii) X = {x1, x2, . . . , xk} be a k-
itemset (i.e., a pattern consisting of k items), where X ⊆ Item and 1 ≤ k ≤ m.
Then, a transactional database = {t1, t2, . . . , tn} is the set of n transactions,
where each transaction tj ⊆ Item. The projected database of X is the set of all
transactions containing X.

Unlike precise databases, each item xi in a transaction tj = {x1, x2, . . . , xh}
in an uncertain database is associated with an existential probability value
P (xi, tj), which represents the likelihood of the presence of xi in tj [12]. Note
that 0 < P (xi, tj) ≤ 1. The existential probability P (X, tj) of a pat-
tern X in tj is then the product of the corresponding existential probability
values of items within X when these items are independent [12]: P (X, tj) =∏

x∈X P (x, tj). The expected support expSup(X) of X in the database is
the sum of P (X, tj) over all n transactions in the database: expSup(X) =∑n

j=1 P (X, tj). A patternX is frequent in an uncertain database if expSup(X) ≥
a user-specified minimum support threshold minsup. Given a database and min-
sup, the research problem of frequent pattern mining from uncertain data
is to discover from the database a complete set of frequent patterns having ex-
pected support ≥ minsup.

2.2 Tree-Based Frequent Pattern Mining Algorithms

Recall from Section 1 that the tree-based UF-growth algorithm [14] uses
UF-trees to mine frequent patterns from uncertain databases in two scans of
the database. Each node in a UF-tree captures (i) an item x, (ii) its existential
probability, and (iii) its occurrence count. Tree paths are shared if the nodes on
these paths share the same ⟨item, existential probability⟩-value. In general, when
dealing with uncertain data, it is not uncommon that the existential probability
values of the same item vary from one transaction to another. As such, the
resulting UF-tree may not be as compact as the FP-tree. See Fig. 1, which shows
a UF-tree for the database presented in Table 1 when minsup=0.5. The UF-tree
contains four nodes for item a with different probability values as children of the
root. Efficiency of the corresponding UF-growth algorithm, which finds all and
only those frequent patterns, partially relies on the compactness of the UF-tree.

In an attempt to make the tree more compact, the UFP-growth algo-
rithm [2] was proposed. Like UF-growth, the UFP-growth algorithm also scans

4 PAKDD-SDA 2014: Paper 11

Table 1. A transactional database (minsup=1.1)
TID Transactions Sorted transactions

(with infrequent items removed)

t1 {a:0.6, b:0.1, c:0.2, f :0.8, g:0.5} {a:0.6, b:0.1, c:0.2, f :0.8, g:0.5}
t2 {a:0.5, b:0.2, c:0.1, e:0.9, g:0.6} {a:0.5, b:0.2, c:0.1, e:0.9, g:0.6}
t3 {a:0.7, b:0.2, c:0.2, f :0.9} {a:0.7, b:0.2, c:0.2, f :0.9}
t4 {a:0.9, b:0.1, c:0.1, e:0.8, f :0.6} {a:0.9, b:0.1, c:0.1, e:0.8, f :0.6}
t5 {b:0.9, c:0.9, d:0.4} {b:0.9, c:0.9}

Fig. 2. The BLIMP-tree for the database shown in Table 1 when minsup=1.1

the database twice and builds a UFP-tree. As nodes for item x having simi-
lar existential probability values are clustered into a mega-node, the resulting
mega-node in the UFP-tree captures (i) an item x, (ii) the maximum existential
probability value (among all nodes within the cluster), and (iii) its occurrence
count (i.e., the number of nodes within the cluster). Tree paths are shared if
the nodes on these paths share the same item but similar existential probability
values. In other words, the path sharing condition is less restrictive than that of
the UF-tree. By extracting appropriate tree paths and constructing UFP-trees
for subsequent projected databases, UFP-growth finds all frequent patterns and
some false positives at the end of the second database scan. The third database
scan is then required to remove those false positives.

A further attempt to improve the compactness of the tree was proposed with
the PUF-growth algorithm [16]. The algorithm uses a PUF-tree to tighten
the upper bound on the expected support of patterns. Each node in a PUF-
tree captures (i) an item x and (ii) an upper bound. Instead of multiplying the
existential probability of x with that of the highest existential probability of any
other item in the same transaction as x. PUF-growth mines frequent patterns by
taking advantage of the tree structure itself to restrict the multiplication to the
highest existential probability of any other item in the prefix of x. A direct effect
of lower numbers of false positives is a shorter runtime due to fewer projected
databases needing to be extracted and less work required in the third database
scan. For these reasons, PUF-growth was reported to be faster than UH-Mine
[15].

3 Our BLIMP-tree Structure

In PUF-trees, the upper bound to expected support of an item xr in a transac-
tion tj was calculated by the product of the existential probability of xr and the
highest existential probability among all items in the prefix of tj (i.e., before xr

A Scalable Data Analytics Algorithm 5

in tj). Such a bound also serves as an upper bound to the expected support for
all the k-itemsets (k ≥ 2) containing xr and items in its prefix in tj .

To further tighten the upper bound for all k-itemsets (k > 2), we propose the
BLIMP-tree structure. The key idea is to keep track of a new value—the “blimp”
value—calculated solely from the maximum of all existential probabilities for
the single item represented in a node xr. Intuitively, this “blimp” value is the
maximum existential probability of xr among all transactions containing xr.
Every time a frequent extension (k > 2) is added to the suffix item, the blimp
value is used. Hence, each node in a BLIMP-tree contains: (i) an item xr, (ii) an
item cap ICap(xr, tj) and (iii) a “blimp” value. See the following definitions.

Definition 1. The item cap ICap(xr, tj) of an item xr in a transaction tj =
{x1, . . . , xr, . . . , xh}, where 1 ≤ r ≤ h, is defined as the product of P (xr, tj) and
the highest existential probability value M of items from x1 to xr−1 in tj (i.e.,
in the proper prefix of xr in tj):

ICap(xr, tj) =

{
P (xr, tj)×M if h > 1
P (x1, tj) if h = 1

, where M = max1≤q≤r−1 P (xq, tj). ⊓⊔

Fig. 2(a) shows the contents of a BLIMP-tree for the database in Table 1, in
which each node additionally maintains the highest probability value for items
represented by that node in that tree path. With this information, BLIMP-trees
give a new upper bound on the expected support of an itemset by the product
of ICap(xr, tj) and the blimp values in the prefix of xr. This new compounded
item cap of any k-itemset X = {y1, y2, . . . , yk} in tj = {x1, . . . , xr, . . . , xh} ⊆
Item (denoted as ̂I(X, tj) where yk = xr) can be defined as follows.

Definition 2. Let tj = {x1, . . . , xr, . . . , xh}, where h = |tj | and r ∈ [1, h];
let X = {y1, y2, . . . , yk} is a k-itemset in tj such that yk = xr. Also, let Myi

denote the maximum existential probability of the i-th item yi in X among all
transactions (including tj) that contain yk. Then,̂I(X, tj) =

{
ICap(xr, tj) if k ≤ 2,

ICap(xr, tj)×
∏k−2

i=1 Myi if k ≥ 3.

Example 1. Consider an uncertain database with five transactions as presented in the

Transactions column in Table 1. ̂I(X, tj) forX = {a, b, c, f} and j = 1 can be computed
as ICap(f, t1)× (

∏2

i=1
Mxi) = 0.8×M ×Mx1 ×Mx2 = 0.8× 0.6× 0.6× 0.1 = 0.0288.

Similarly, ̂I(X, tj) for X = {b, c, g} and j = 1 is ICap(g, t1)× (
∏1

i=1
Mxi) = 0.5×M ×

Mx1 = 0.5× 0.8× 0.1 = 0.04. ⊓⊔

Note that expSupCap(X) =
∑n

j=1{ ̂I(X, tj) | X ⊆ tj}, and it serves as an up-
per bound on the expected support of X. However, in BLIMP-trees, the cap
of expected support does not satisfy the downward closure property because
expSupCap(Y) can be less than expSupCap(X) for some proper subset Y of X.
See Example 2.

Example 2. Let t21={a:0.3, e:0.2, f :0.9, g:0.9} and t22 = {a:0.4, e:0.7, f :0.3, g:0.9} be
the only transactions in the database containing X={a, e, f , g} and its subset Y = {a,

6 PAKDD-SDA 2014: Paper 11

e}. Then, expSupCap(Y) = (P (e, t21)×M)+(P (e, t22)×M) = (0.2×0.3)+(0.7×0.4) =
0.06+0.28 = 0.34. expSupCap(X) = [(P (g, t21)×M)+(P (g, t22)×M)]×Mx1 ×Mx2 =
[(0.9× 0.9) + (0.9× 0.7)]× 0.4× 0.7 = 0.4032. This shows that expSupCap(Y) can be
< expSupCap(X). ⊓⊔

However, for the same specific cases (e.g., when X & Y share the same
suffix item xr), the cap of expected support for BLIMP-trees satisfies the down-
ward closure property and as such exhibits the partial downward closure prop-
erty: For any non-empty subset Y of X such that both X & Y end with xr,
(i) expSupCap(X) ≥minsup implies expSupCap(Y) ≥minsup and (ii) expSupCap(Y)
< minsup implies expSupCap(X) < minsup.

Lemma 1. The cap of expected support of a pattern X satisfies the partial
downward closure property.

The process of constructing a BLIMP-tree is identical to that of the UF-
tree [14] for the first database scan, in which expected support of every domain
item is computed. Any infrequent item x (i.e., having expSup(x) < minsup) is
removed. During a second database scan, the BLIMP-tree is constructed in a
fashion similar (but not identical) to that of the UF-tree. The key difference
is that, when inserting a transaction item, in addition to computing the item
cap, we also pass along the existential probability of that item. The item is then
inserted into the BLIMP-tree according to the I-list order. If a node containing
that item already exists in the tree path, we update both (i) its item cap (by
taking the sum of the current item cap of the item with the existing item cap) and
(ii) its blimp value (by taking the maximum of the current existential probability
of the item with the existing blimp value). Otherwise, we create a new node with
the item cap and existential probability of the item (i.e., the initial blimp value).
For a better understanding of BLIMP-tree construction, see Example 3.

Example 3. Consider the database in Table 1, and let the user specified support thresh-
old minsup be set to 1.1. Let the I-list follow the alphabetic ordering of item values.
After the first database scan, the contents of the I-list after computing the expected
supports of all items and after removing infrequent items (e.g., item d) are ⟨a:2.7, b:1.4,
c:1.4, e:1.7, f :2.3, g:1.1⟩.

With the second database scan, we insert only the frequent items of each transaction
(with their respective item cap values) in the I-list order. For instance, when inserting
transaction t1={a:0.6, b:0.1, c:0.2, f :0.8, g:0.5}, items a, b, c, f and g (with their
respective item cap and existential probability values ⟨0.6, 0.6⟩, ⟨0.1× 0.6 = 0.06, 0.1⟩,
⟨0.2 × 0.6 = 0.12, 0.2⟩, ⟨0.8 × 0.6 = 0.48, 0.8⟩, ⟨0.5 × 0.8 = 0.4, 0.5⟩) are inserted in
the BLIMP-tree as shown in Fig. 2(a). As t2 shares a common prefix ⟨a, b, c⟩ with an
existing path in the BLIMP-tree created when t1 was inserted, (i) the item cap values
of those items in the common prefix (i.e., a, b and c) are added to their corresponding
nodes, (ii) the existential probability values of those items are checked against the blimp
values for their corresponding nodes, with only the maximum saved for each node, and
(iii) the remainder of the transaction (i.e., a new branch for items e and g) is inserted
as a child of the last node of the prefix (i.e., as a child of c). Fig. 2(a) shows the status
of the BLIMP-tree after inserting all of the remaining transactions and pruning those
items with infrequent extensions (i.e., item g, since its total item cap is less than the

A Scalable Data Analytics Algorithm 7

user specified minsup. Similar to the FP-tree, our BLIMP-tree maintains horizontal
node traversal pointers, which are not shown in the figures for simplicity. ⊓⊔

The number of tree nodes in a BLIMP-tree (i) can be equal to that of an
FP-tree [9] (when the BLIMP-tree is constructed using the frequency-descending
order of items) and (ii) is bounded above by

∑
tj∈ DB |F (tj)|. In addition, the

complete set of mining results can be generated because a BLIMP-tree contains
F (tj) for all transactions as it stores the total item cap for a node. Mining based
on this item cap value ensures that no frequent k-itemset (k > 1) will be missed.

Furthermore, the compounded item cap for any pattern X computed based
on (i) the existential probability value of xk, (ii) the highest existential proba-
bility value in its prefix and (iii) the blimp values of its prefix items provides
a tighter upper bound than that based on the upper bound of PUF-trees be-
cause the former tightens the bound as candidates are generated during the
mining process with increasing cardinality of X, whereas the latter has no such
compounding effect.

4 The BLIMP-growth Algorithm

Here, we propose a pattern-growth mining algorithm called BLIMP-growth,
which mines frequent patterns from our BLIMP-tree structure. In general, the
construction of a BLIMP-tree is similar to that of UF-tree, except that BLIMP
values are additionally stored as the third component in each tree node. (Re-
call that each node in a UF-tree contains only two components: an item and
its expected support.) Thus, the basic operation in BLIMP-growth for mining
frequent patterns is to construct a projected database for each potential frequent
pattern and recursively mine its potentially frequent extensions.

Once an item x is found to be potentially frequent, the existential probability
of x must contribute to the expected support computation for every pattern
constructed from the {x}-projected database (denoted as DBx). Hence, the cap
of expected support of x is guaranteed to be the upper bound of the expected
support of the pattern, since it is calculated from the existential probability of
x together with the two highest existential probability values in the prefix of x,
whereas the expected support of x uses every existential probability value in the
prefix of x. This implies that the complete set of patterns with suffix x can be
mined based on the partial downward closure property stated in Lemma 1. Note
that expSupCap(X) is the upper bound of expSup(X), and it satisfies the partial
downward closure property. So, we can directly proceed to generate all potential
frequent patterns from the BLIMP-tree based on the following corollary.

Corollary 1. Let (i) X be a k-itemset (where k > 1) with expSupCap(X) ≥
minsup in the database and (ii) Y be an itemset in the X-projected database
(denoted as DBX). Then, expSupCap(Y ∪X) in the original database ≥ minsup
if and only if expSupCap(Y) in all the transactions in DBX ≥ minsup.

Based on Lemma 1 and Corollary 1, which apply to BLIMP-trees without
change, we apply the BLIMP-growth algorithm to our BLIMP-tree for generating

8 PAKDD-SDA 2014: Paper 11

only those k-itemsets (where k > 1) with caps of expected support ≥ minsup.
Although this mining process may also lead to some false positives (i.e., those
itemsets that appear to be frequent but truly infrequent) in the resulting set of
frequent patterns at the end of the second database scan, all these false positives
will be easily filtered out with the third database scan. Our BLIMP-growth is
guaranteed to return to the user the exact collection of frequent patterns (i.e., all
and only those frequent patterns with neither false positives nor false negatives).

Example 4. The BLIMP-growth algorithm mines extensions of every item in the I-
list. For example, the {f}-conditional tree, as shown in Fig. 2(b) when minsup =
1.1, is constructed by accumulating the tree path ⟨a:2.7, b:0.39, c:0.4, e:1.17 ⟩. When
projecting this path, BLIMP-growth updates the cap of expected support for each
item in the projected database (as shown in the I-list in the figure) using the caps of
expected support from all f nodes in the original tree. Since e appears only in the path
for f :0.54, it is pruned in DBf for having expSupCap < minsup. Since every other item
in the prefix of f has expSupCap ≥ minsup, they are represented in the {f}-conditional
tree.

This {f}-conditional tree is then used to generate (i) all 2-itemsets containing
item f and (ii) their further extensions by recursively constructing projected databases
from them. For all k-itemsets, k ≥ 3, that are generated, the cap of expected support
is multiplied by the blimp value in each node. Consequently, at the k = 2 level in the
{f}-conditional tree, patterns {f , c}:1.65, {f , b}:1.65 and {f , a}:1.65 are generated.
BLIMP-growth then continues to mine the {f , b}-conditional tree and the {f , c}-
conditional tree, as shown in Fig. 2(c). Notice that b does not appear in the {f , c}-
conditional tree since the multiplication of the expSupCap(c) with the blimp value
of b in the {f}-conditional tree generates a new expSupCap(b) in DBf,c < minsup.
Consequently, at the k = 3 level in the {f , c}-conditional tree, only the pattern {f , c,
a}:1.485 is generated. Because of lower blimp values we are able to prune candidates
{f , c, b} and {f , c, b, a} from ever being generated in BLIMP-growth.

The complete set of candidates generated by BLIMP-growth includes: {f , c, a}:1.485,
{f , b, a}:1.485, {f , c}:1.65, {f , b}:1.65, {f , a}:1.65, {e, c}:1.17, {e, b}:1.17, {e, a}:1.17
and {c, b}:1.21 ⊓⊔

As shown in Example 4, BLIMP-growth finds a complete set of patterns from
a BLIMP-tree without any false negatives.

5 Experimental Results

We compared the performances of our BLIMP-growth algorithm with the ex-
isting PUF-growth [16] algorithm. Recall from a previous work by Leung et al.
[16] on the evaluation of the performance of PUF-growth that PUF-growth was
shown to be outperformed UF-growth [14], UFP-growth [2] and UH-Mine [2]. We
used both real life and synthetic datasets for our tests. The synthetic datasets,
which are generally sparse, are generated within a domain of 1000 items by the
data generator developed at IBM Almaden Research Center [1]. We also consid-
ered several real life datasets such as mushroom, retail and kosarack. We assigned
a (randomly generated) existential probability value from the range (0,1] to each
item in every transaction in the dataset. The name of each dataset indicates some

A Scalable Data Analytics Algorithm 9

Fig. 3. Experimental results

characteristics of the dataset. For example, the dataset u100k5L 10100 contains
100K transactions with average transaction length of 5, and each item in a trans-
action is associated with an existential probability value that lies within a range
of [10%, 100%]. Due to space constraints, we present here only some results on
the above datasets.

All programs were written in C++ and ran in a Linux environment on an
Intel Core i5-661 CPU with 3.33GHz and 7.5GB ram. Unless otherwise specified,
runtime includes CPU and I/Os for I-list construction, tree construction, mining,
and false-positive removal. While the number of false positives generated at the
end of the second database scan may vary, all algorithms (ours and others)
produce the same set of truly frequent patters at the end of the mining process.
The results shown in this section are based on the average of multiple runs for
each case. In all experiments, minsup was expressed in terms of the absolute
support value, and all trees were constructed using the ascending order of item
value.

10 PAKDD-SDA 2014: Paper 11

5.1 False Positives

Both the existing PUF-growth algorithm and our BLIMP-growth algorithm gen-
erate some false positives. Their overall performances depend on the number of
false positives generated. In this experiment, we measured the number of false
positives generated by all three algorithms for fixed values of minsup with dif-
ferent datasets. Due to space constraints, we present results using one minsup
value for each of the two datasets (i.e., mushroom 5060 and u100k5L 10100) in
Figs. 3(a)–(b). In general, BLIMP-growth was observed to remarkably reduce
the number of false positives when compared with PUF-growth. The primary
reason of this improvement is that the upper bounds for the BLIMP-growth
algorithm are much tighter than PUF-growth for higher cardinality itemsets
(k > 2), hence less total candidates are generated and subsequently less false
positives. If fact, when existential probability values were distributed over a nar-
row range with a higher minsup as shown in Fig. 3(a), BLIMP-growth generated
fewer than 1% of the total false positives of PUF-growth. Also note in Fig. 3(b)
that for k = 3 itemsets, the total number of false positives in BLIMP-growth
was much less (fewer than 20% in total, with fewer than 60% for k = 4 itemsets
and fewer than 20% for higher cardinality levels) than that of PUF-growth. This
happens because for lower cardinality (typically around k = 3) itemsets, the
blimp value may actually be higher than the silver value. When different items
from different transactions end up contributing to the silver value, the maximum
value of a single item over all the transactions containing X is more likely to be
higher than the maximum of all the second highest values (regardless of item)
in those transactions. The probability of this happening decreases significantly
with higher cardinality itemsets. As a reulst, BLIMP-growth had a runtime less
than or equal to that of PUF-growth in every single experiment we ran.

5.2 Runtime

Recall that PUF-growth was shown to outperform UH-Mine [16] and subse-
quently UFP-growth [2, 19]. Hence, we compared our BLIMP-growth algorithm
with PUF-growth. Figs. 3(c)–(d) show that BLIMP-growth had shorter runtimes
than PUF-growth for datasets mushroom 5060 and u100k5L 10100. The primary
reason is that, even though PUF-growth finds the exact set of frequent patterns
when mining an extension of X, it may suffer from the high computation cost
of generating unnecessarily large numbers of candidates due to only using two
values in its item cap calculation: the existential probability of the suffix item
and the single highest existential probability value in the prefix of xr in tj . This
allows large amounts of high cardinality candidates to be generated with similar
expected support cap values as low cardinality candidates with the same suffix
item. The use of the blimp values in BLIMP-growth ensures that those high
cardinality candidates are never generated due to their expected support caps
being much closer to the actual expected support. Fig. 3(d) also shows that for
low values of minsup BLIMP-growth had shorter runtimes. The primary reason
is that for lower values of minsup, the number of high cardinality candidates

A Scalable Data Analytics Algorithm 11

being generated increases. In this situation, the probability is higher that the
blimp values in each node will actually be low, tightening the upper bound even
further.

5.3 Scalability

Nowadays, high volume of high-variety and high-veracity vailable data can be
collected and transmitted at high velocity. It becomes important to have a scal-
able algorithm to analyze these data. To test the scalability of BLIMP-growth,
we applied the algorithm to mine frequent patterns from datasets with increas-
ing size. The experimental results presented in Figs. 3(e)–(f) indicate that our
algorithm (i) is scalable with respect to the number of transactions and (ii) can
mine large volumes of uncertain data within a reasonable amount of time.

The experimental results show that our algorithms effectively mine frequent
patterns from uncertain data irrespective of distribution of existential probability
values (whether most of them have low or high values and whether they are
distributed into a narrow or wide range of values).

6 Conclusions

In this paper, we proposed a scalable data analytics algorithm called BLIMP-
growth to discover frequent patterns from uncertain data. The algorithm first
constructs the BLIMP-tree structure to capture important information from un-
certain data. The algorithm then finds all potentially frequent patterns (i.e.,
patterns with upper bounds to expected support ≥ user-defined minsup thresh-
old) from this tree structure. As such a collection of potentially frequent patterns
contains all truly frequent patterns as well as some false positives (i.e., patterns
with upper bounds to expected support ≥ minsup but with expected support <
minsup). To ensure the scalability of the algorithm, BLIMP-growth reduces the
number of false positives by obtaining tight upper bounds to expected supports.
It does so by accumulating item caps with a blimp value (computed based on the
maximum existential probability of a particular item) in the BLIMP-tree struc-
tures during the mining process. Hence, they further tighten the upper bound
on expected supports of frequent patterns when compared to existing algorithms
like PUF-growth. BLIMP-growth has both been shown to generate significantly
fewer false positives than PUF-growth (in the range of 1% to 55% of the total
value). In addition, with low values of minsup BLIMP-growth has been shown
to generate fewer than 20% of the total false positives of PUF-growth. Our al-
gorithms are guaranteed to find all frequent patterns (with no false negatives).
Experimental results show the effectiveness of our BLIMP-growth algorithms in
mining frequent patterns from the respective tree structures.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: VLDB
1994, pp. 487–499.

12 PAKDD-SDA 2014: Paper 11

2. Aggarwal, C.C., Li, Y., Wang, J., Wang, J.: Frequent pattern mining with uncertain
data. In: ACM KDD 2009, pp. 29–37.

3. Bernecker, T., Kriegel, H.-P., Renz, M., Verhein, F., Zuefle, A.: Probabilistic fre-
quent itemset mining in uncertain databases. In: ACM KDD 2009, pp. 119–127.

4. Calders, T., Garboni, C., Goethals, B.: Approximation of frequentness probability
of itemsets in uncertain data. In: IEEE ICDM 2010, pp. 749–754.

5. Calders, T., Garboni, C., Goethals, B.: Efficient pattern mining of uncertain data
with sampling. In: PAKDD 2010, Part I. LNAI 6118, pp. 480–487.

6. Chui, C.-K., Kao, B., Hung, E.: Mining frequent itemsets from uncertain data. In:
PAKDD 2007. LNAI 4426, pp. 47–58.

7. Frank, M., Dong, B., Felt, A.P., Song, D.: Mining permission request patterns from
android and facebook applications. In: IEEE ICDM 2012, pp. 870-875.

8. Gao, C., Wang, J., Yang, Q.: Efficient mining of closed sequential patterns on
stream sliding window. In: IEEE ICDM, pp. 1044-1049.

9. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: ACM SIGMOD 2000, pp. 1–12.

10. Krajca, P., Outrata, J., Vychodil, V.: Using frequent closed itemsets for data di-
mensionality reduction. In: IEEE ICDM 2011, pp. 1128-1133.

11. Lakshmanan, L.V.S., Leung, C.K.-S., Ng, R.T.: Efficient dynamic mining of con-
strained frequent sets. ACM TODS 28(4), 337–389 (2003)

12. Leung, C.K.-S.: Mining uncertain data. WIREs Data Mining and Knowledge Dis-
covery 1(4), 316–329 (2011)

13. Leung, C.K.-S., Hao, B.: Mining of frequent itemsets from streams of uncertain
data. In: IEEE ICDE 2009, pp. 1663–1670.

14. Leung, C.K.-S., Mateo, M.A.F., Brajczuk, D.A.: A tree-based approach for frequent
pattern mining from uncertain data. In: PAKDD 2008. LNAI 5012, pp. 653–661.

15. Leung, C.K.-S., Tanbeer, S.K.: Fast tree-based mining of frequent itemsets from
uncertain data. In: DASFAA 2012. LNCS 7238, pp. 272–287.

16. Leung, C.K.-S., Tanbeer, S.K.: PUF-Tree: A compact tree structure for frequent
pattern mining of uncertain data. In: PAKDD 2013. LNCS 7818, pp. 13–25.

17. Patnaik, D., Laxman, S., Chandramouli, B., Ramakrishnan, N.: Efficient episode
mining of dynamic event streams. In: IEEE ICDM 2012, pp. 605-614.

18. Soulet, A., Rassi, C., Plantevit, M., Cremilleux, B.: Mining dominant patterns in
the sky. IEEE ICDM 2011, pp. 655-664.

19. Tong, Y., Chen, L., Cheng, Y., Yu, P.S.: Mining frequent itemsets over uncertain
databases. PVLDB 5(11), 1650–1661 (2012)

20. Zhang, Q., Li, F., Yi, K.: Finding frequent items in probabilistic data. In: ACM
SIGMOD 2008, pp. 819–832.

