
Parallel Time Series Modeling - A Case Study of
In-Database Big Data Analytics

Hai Qian1, Shengwen Yang1, Rahul Iyer1, Xixuan Feng1 ?,
Mark Wellons2 ??, and Caleb Welton1

1 Predictive Analytics Team, Pivotal Inc.
2 Amazon.Com Inc.

Abstract. MADlib is an open-source library for scalable in-database
analytics. In this paper, we present our parallel design of time series anal-
ysis and implementation of ARIMA modeling in MADlib’s framework.
The algorithms for fitting time series models are intrinsically sequential
since any calculation for a specific time t depends on the result from the
previous time step t − 1. Our solution parallelizes this computation by
splitting the data into n chunks. Since the model fitting involves multiple
iterations, we use the results from previous iteration as the initial values
for each chunk in the current iteration. Thus the computation for each
chunk of data is not dependenton on the results from the previous chunk.
We further improve performance by redistributing the original data such
that each chunk can be loaded into memory, minimizing communication
overhead. Experiments show that our parallel implementation has good
speed-up when compared to a sequential version of the algorithm and
R’s default implementation in the “stats” package.

keywords: parallel computation, time series, database management system,
machine learning, big data, ARIMA

1 Introduction

Time series analysis plays an important part in econometrics, finance, weather
forecasting, earthquake prediction and many other fields. For example, one of
the most conspicuous data analytics task, stock price forecasting, falls into the
category of time series analysis. Unlike other data analytics, time series data
has a natural temporal ordering. And many time series modeling methods, such
as autoregressive integrated moving average (ARIMA) [4] and Cox proportional
hazards [7], therefore depend on sequential processing of time series data, which
raises a challenge for the data-parallel implementation.

In this paper, we present our parallel implementation of ARIMA, a popular
and important time series analysis model, in MADlib [14]. Although all algo-
rithms for ARIMA modeling process the data sequentially, we can still split the
? The first four authors contributed equally to this work.

?? Mark Wellons was an intern with Pivotal Inc. during the completion of this work.



data into multiple chunks, each containing consecutive parts of the time series.
Each chunk needs the computation result from its neighboring chunk as initial
values for its computation. Since the algorithm executes over multiple iterations,
we can overcome this limitation by using the results of the preceding chunk from
the previous iteration instead of that of the current iteration. The key idea is
to take advantage of the iterative nature of the learning algorithms and rely on
only local ordering, as illustrated in Fig. 1. At the time of convergence, there is
no difference between the values from the previous iteration and the values from
the current iteration.

Finally, it is important to note that the data in the database is not necessarily
ordered. For fitting models like ARIMA, where the data has to be processed in
the fixed order of time, one has to order the data in every iteration, which is
time consuming. We avoid this by chunking, sorting, and re-distributing the
data accross the segments so that a chunk of ordered data can be read into
memory all at once in a segment. This technique not only avoids ordering the
data repeatedly but also decreases both the I/O overhead and database function
invocation overhead.

Fig. 1: Comparison between sequential and distributed designs. A segment is an
independent database process in a shared-nothing distributed MPP (massively
parallel processing) database.

The implementation is part of an open-source, scalable, in-database analytics
initiative, MADlib [14], maintained by the Predictive Analytics Team at Pivotal
Inc [1]. It provides data-parallel implementations of mathematical, statistical
and machine-learning methods for structured and unstructured data.

1.1 Related Work

Parallel and Scalable Implementations. The problem of designing parallel al-
gorithms has attracted much attention (see [3] for recent tutorials). Significant
efforts have been spent on parallelizing various intricate machine learning algo-
rithms, including k-means++ [2], support vector machines [16] and conditional



random fields [5]. This work focuses on parallelizing time series analysis algo-
rithms, where the training process requires a global ordering.

Machine Learning in Databases. Database management systems, being the best
in data storage, operation, and analysis for many years, are also studied for data
mining and machine learning on large datasets [9, 12]. Ordonez [10] suggested
sufficient statistics can be efficiently computed for an important set of models.
Feng et al. [8] proposed an architecture linking an essential database program-
ming model, user-defined aggregates, to convex optimization. These techniques,
however, did not address time series analysis models in the context of databases.

1.2 What is MADlib?

MADlib is an analytics platform developed by the Predictive Analytics Team at
Pivotal Inc. (previously Greenplum). It can be deployed either onto the Green-
plum database system (an industry-leading shared-nothing MPP database sys-
tem) or the open-source PostgreSQL database system. The package itself is open-
source and free. The MADlib project was initiated in late 2010 from a research
idea by Cohen et. al. [6] who suggested a new trend of big data analytics requir-
ing advanced (mathematical, statistical, machine learning), parallel and scalable
in-database functions (“MAD” stands for “magnetic”, “agile”, and “deep” - see [6]
for more details on each property).

By itself MADlib provides a pure SQL interface. To better facilitate data sci-
entists from the R [11] community, there also exists a R front-end package called
PivotalR [15]. On Greenplum database (GPDB) systems, MADlib utilizes the
data parallel functionality. The calculation is performed in parallel on multiple
segments of GPDB, and results from the segments are merged and then summa-
rized on the master node. In many cases, multiple iterations of such calculations
are needed. The core functionality for each iteration is implemented in C++ and
Python is used to collate results from all iterations.

Although MADlib does not perform parallel computation on the open-source
database system PostgreSQL, it is still valuable for processing large data sets
that cannot be loaded into memory. For example, in this paper we will describe a
comparison between our implementation of ARIMA and the ‘arima’ function in
R’s ‘stats’ package. For building an ARIMA model for a time series data set with
the length 108, MADlib on PostgreSQL has about the same execution time as R,
while consuming only 0.1% of the memory used by R. Thus, MADlib provides
the ability of processing large data sets to open-source users for free.

MADlib has various modules including linear, logistic, multinomial logistic
regression, elastic-net regularization for linear and logistic regressions, k-means,
association rules, cross validation, matrix factorization methods, LDA, SVD and
PCA, ARIMA and many other statistical functions. A detailed user documen-
tation is available online at http://doc.madlib.net. For this paper, we focus on
our implementation for ARIMA in MADlib.



2 Implementation of ARIMA

In the next few subsections, we describe the algorithm used to solve the problem
of maximization of partial log-likelihood to obtain the optimal values of the
coefficients of ARIMA. Then, we point out the reason why it is difficult to make
the algorithm run in-parallel. This is a common situation in all algorithms that
fit ARIMA models. Next, we describe a generic solution to this problem that
can be applied to time series problems. Then we describe a simple method to
improve the performance of our algorithm. Finally, we discuss various ways to
generalize our method to other algorithms.

2.1 The Algorithm

This section follows the design document for ARIMA on the MADlib website [13].
An ARIMA model is an auto-regressive integrated moving average model.

An ARIMA model is typically expressed in the form

(1− φ(B))Yt = (1 + θ(B))Zt, (1)

where B is the backshift operator. The time t is from 1 to N .
ARIMA models involve the following variables:

1. The lag difference Yt, where Yt = (1−B)
d
(Xt − µ).

2. The values of the time series Xt.
3. p, q, and d are the parameters of the ARIMA model. d is the differencing

order, p is the order of the AR operator, and q is the order of the MA
operator.

4. The AR operator φ(B).
5. The MA operator θ(B).
6. The mean value µ, which is set to zero when d > 0, or can be estimated by

the ARIMA algorithm.
7. The error terms Zt.

The auto regression operator models the prediction for the next observation
as some linear combination of the previous observations. More formally, an AR
operator of order p is defined as

φ(B)Yt = φ1Yt−1 + · · ·+ φpYt−p (2)

The moving average operator is similar, and it models the prediction for the
next observation as a linear combination of the errors in the previous prediction
errors. More formally, the MA operator of order q is defined as

θ(B)Zt = θ1Zt−1 + · · ·+ θqZt−q. (3)

We assume that

Pr(Zt) =
1√
2πσ2

e−Z
2
t /2σ

2

, t > 0 (4)



and that Z−q+1 = Z−q+2 = · · · = Z0 = Z1 = · · · = Zp = 0.
The likelihood function L for N values of Zt is then

L(φ, θ) =

N∏
t=1

1√
2πσ2

e−Z
2
t /2σ

2

(5)

so the log likelihood function l is

l(φ, θ) =

N∑
t=1

ln

(
1√
2πσ2

e−Z
2
t /2σ

2

)

=

N∑
t=1

− ln
(√

2πσ2
)
− Z2

t

2σ2

= −N
2
ln
(
2πσ2

)
− 1

2σ2

N∑
t=1

Z2
t . (6)

Thus, finding the maximum likelihood is equivalent to solving the optimization
problem (known as the conditional least squares formation)

min
θ,φ

N∑
t=1

Z2
t . (7)

The error term Zt can be computed iteratively as follows:

Zt = Yt − Ft(φ, θ, µ) (8)

where

Ft(φ, θ, µ) = µ+

p∑
i=1

φi(Yt−i − µ) +
q∑
i=1

θiZt−i (9)

Levenberg-Marquardt algorithm (LMA), also known as the damped least-
squares (DLS) method, provides a numerical solution to the problem of min-
imizing a function, generally nonlinear, over the function’s parameter space.
These minimization problems arise especially in least squares curve fitting and
nonlinear programming.

To understand LMA, it helps to know the gradient descent method and the
Gauss-Newton method. On many “reasonable” functions, the gradient descent
method takes large steps when the current solution is distant from the true
solution, but is slow to converge when the current solution is close to the true
solution. The Gauss-Newton method is much faster for converging when the
current iterate is in the neighborhood of the true solution. The LMA tries to
achieve the best of both worlds and combine the gradient descent step with the
Gauss-Newton step in a weighted average. For iterates far from the true solution,
the step favors the gradient descent step, but as the iterate approaches the true
solution, the Gauss-Newton step dominates.



Like various numeric minimization algorithms, LMA is an iterative proce-
dure. To start a minimization, the user has to provide an initial guess for the
parameter vector, p, as well as some tuning parameters τ , ε1, ε2, ε3, and kmax.
Let Z(p) be the vector of calculated errors (Zt’s) for the parameter vector p, and
let J = (J1, J2, . . . , JN )

T be a Jacobian matrix.
A proposed implementation is shown in Algorithm 1.

Input: An initial guess for parameters φ0,θ0, µ0

Output: The parameters that maximize the likelihood φ∗,θ∗, µ∗

k ← 0; v ← 2; (φ,θ, µ)← (φ0,θ0, µ0);
Calculate Z(φ,θ, µ) with Eq. (9). // Vector of errors;
A← JTJ // The Gauss-Newton Hessian approximation;
u← τ ∗maxi(Aii) // Weight of the gradient-descent step;
g ← JTZ(φ,θ, µ) // The gradient descent step;
stop← (‖g‖∞ ≤ ε1) // Termination Variable;
while not stop and k < kmax do

k ← k + 1;
repeat

δ ← (A+ u× diag(A))−1g // Calculate step direction;
if ‖δ‖ ≤ ε2‖(φ,θ, µ)‖ then // Change is too small to continue.

stop← true;
else

(φnew,θnew, µnew)← (φ,θ, µ) + δ // A trial step;
ρ← (‖Z(φ,θ, µ)‖2 − ‖Z(φnew,θnew, µnew)‖2)/(δT (uδ + g)) ;
if ρ > 0 then // Trial step was good

(φ,θ, µ)← (φnew,θnew, µnew) // Update variables;
Calculate Z(φ,θ, µ) with Eq. (9); A← JTJ ; g ← JTZ(φ,θ, µ);
stop← (‖g‖∞ ≤ ε1) or (‖Z(φ,θ, µ)2‖ ≤ ε3) ;
v ← 2; u→ u ∗max(1/3, 1− (2ρ− 1)3);

else// Trial step was bad
v ← 2v; u← uv;

end
end

until stop or ρ > 0;
end
(φ∗,θ∗, µ∗)← (φ,θ, µ);

Algorithm 1: A proposed LMA implementation for fitting ARIMA model

Suggested values for the tuning parameters are ε1 = ε2 = ε3 = 10−15, τ =
10−3 and kmax = 100.

The Jacobian matrix J = (J1, J2, . . . , JN )
T requires the partial derivatives,

which are

Jt = (Jt,φ1
, . . . , Jt,φp

, Jt,θ1 , . . . , Jt,θq , Jt,µ)
T (10)



Here the last term is present only when we want to estimate the mean value of
the time series too. The iteration relations for J are

Jt,φi
= −∂Zt

∂φi
= Yt−i − µ+

q∑
j=1

θj
∂Zt−j
∂φi

= Yt−i − µ−
q∑
j=1

θjJt−j,φi
, (11)

Jt,θi = −
∂Zt
∂θi

= Zt−i +

q∑
j=1

θj
∂Zt−j
∂θi

= Zt−i −
q∑
j=1

θjJt−j,θi , (12)

Jt,µ = −∂Zt
∂µ

= 1−
p∑
j=1

φj −
q∑
j=1

θj
∂Zt−j
∂µ

= 1−
p∑
j=1

φj −
q∑
j=1

θjJt−j,µ. (13)

Note that the mean value µ is considered separately in the above formulations. If
we do not want to estimate the mean value, µ will be simply set to 0. Otherwise,
µ will also be estimated together with φ and θ. The initial conditions for the
above equations are

Jt,φi = Jt,θj = Jt,µ = 0 for t ≤ p, and i = 1, . . . , p; j = 1, . . . , q , (14)

because we have fixed Zt for t ≤ p to be a constant 0 in the initial condition.
Note that J is zero not only for t ≤ 0 but also for t ≤ p.

2.2 Problems in Parallelization

It is easy to see that Eqs. (8, 11, 12, 13) are difficult to parallelize. Each step
computation uses the result from the previous step. Therefore, we have to scan
through the data sequentially to compute the quatities in these equations, and
we have to do this in every iteration. If the data set is large then it is time-
consuming to use this algorithm.

2.3 Our Solution

In order to utilize the data parallel capability of MPP(massively parallel pro-
cessing) database, we propose to split the whole time series data into a set of
sorted chunks numbered from 1 to N , each containing a sequence of consecutive
time series data of size K. During the same time, we re-distribute the chunks of
data onto all segments of the MPP database so that we could process them in
parallel.

Since the model fitting involves multiple iterations of computations, for any
subset i except for the first one, we use the results of the (i− 1)-th subset from
the previous iteration as the initial values. The first subset’s initial values are
known to be 0. Thus in each iteration, the computation for each subset of data
does not need to wait for the results from the previous subset. In this way, the
model fitting computation can be done in parallel.

Further, we find that aggregating each subset of consecutive time series data
into an array (i.e. a data chunk) can greatly simplify the implementation (for



example, from a stateful window function implementation to a plain UDF im-
plementation) and accelerate the computation (mainly due to the reduction of
I/O overhead and function call overhead). Furthermore, the value of size K is
chosen in such a way that each chunk of data can be completely loaded into the
available memory.

The following SQL script shows how we split and redistribute the data ac-
cording to the above proposals.

-- redistribute the consecutive time series data into a same segment
create temp table dist_table as
select

((tid - 1) / chunk_size)::integer + 1 as distid, tid, tval
from input_table
distributed by (distid)

-- insert the preceding p data points for each chunk
insert into dist_table
select o.distid + 1, tid, NULL, tval
from (

select distid, max(tid) maxid
from dist_table
where distid <> (select max(distid) from dist_table)
group by distid

) q1, dist_table o
where q1.distid = o.distid and q1.maxid - o.tid < p

-- aggregate each chunk into an array to avoid repeated ordering
-- and communication overhead
create temp table work_table as
select

distid, (distid - 1) * chunk_size + 1 as tid,
array_agg(tval order by tid) as tvals

from dist_table
group by distid
distributed by (distid)

Our experiments show that the convergence of our implementation is very
good. The ‘chunk size’ parameter does not have a significant impact on the
performance as long as it is not too small, which can make the chunking mean-
ingless, or not too large, which can make the data re-distribution difficult. As is
shown in Fig. (2), the execution times are around 400 ∼ 500 secs for different
chunk sizes. The stable execution time for different chunk sizes makes it easier
for the user to choose the proper parameters for the algorithms.

3 Experimentation

In this section, we present a set of experiments to measure the performance of
our parallel implementation of ARIMA.



4
0
0

4
5

0
5
0
0

1e+04 1e+05 1e+06 1e+07

Greenplum Database

(time series length = 10
8
)

Chunk Size

E
xe

c
u
ti
o

n
 T

im
e
 (

s
e
c
)

Fig. 2: We fit a time series with length of 108 using different chunk sizes. The
execution times are around 400 ∼ 500 secs, and are quite stable.

Configuration. We did our experiments on a DCA (Data Computation Appli-
ance) produced by EMC Corporation, containing a Greenplum database system
installed with 48 segments. The data sets that we used for the experiments are
generated by R’s “arima.sim”. We generated multiple time series with different
lengths. The data set with the length 109 is too large to be generated by R
directly. Instead we first generated 10 pieces of time series with the lengths 108,
and then assemble them together to form the complete time series.

3.1 Scalability

First, we measure the execution time of our implementation applied onto time
series with different lengths. We run the tests in both Greenplum database and
PostgreSQL database.

As is shown in Fig. 3, the execution time for large data sets is almost linear
with respect to the length of the time series. For smaller data sets, the commu-
nication overhead between the multiple segments has a negative impact and the
execution time is larger than the time for a pure linear execution time.

PostgreSQL database does not have the overhead of merging results from
multiple segments, and thus the execution time, as shown in Fig. 3, is a linear
function of the data size.

3.2 Total runtime comparisons

In Table 1, we compare the execution times of ARIMA model fitting in R and in
MADlib on Greenplum database and PostgreSQL database. The execution time
of MADlib’s ARIMA on PostgreSQL is approximately the same as R (actually
it is a little faster), but the memory usage is only a tiny fraction of R’s “arima”
function. This is because R loads all data into memory for processing, while the
database systems esentially load one row of data into memory for processing and
then proceed to the next row.



1e+05 1e+06 1e+07 1e+08 1e+09

1
0

5
0

2
0

0
1

0
0

0
5

0
0

0

Greenplum Database

(chunk size = 10
5
)

Time Series Length

E
xe

c
u
ti
o
n
 T

im
e
 (

s
e
c
)

(a)

1e+05 1e+06 1e+07 1e+08 1e+09

1
1
0

1
0
0

1
0
0
0

1
0
0
0
0

PostgreSQL Database

(chunk size = 10
5
)

Time Series Length

E
xe

c
u
ti
o
n
 T

im
e
 (

s
e
c
)

(b)

Fig. 3: (left) We fit time series with MADlib’s ARIMA function on GPDB (left)
and PostgreSQL(right). The chunk size in both cases is 105. The red dashed line
is the fit to t = αl, where t is the execution time, l is the length of the time
series and α is a constant.

Although GPDB uses 48 segments, the speedup over PostgreSQL is about
3X to 4X. This is due to the communication overhead of communicating between
multiple segments, especially the part where the data is loaded and re-distributed
for sorting. If we compare the time taken for actual computation, GPDB is on
average 17.6X faster than PostgreSQL.

MADlib on GPDB MADlib on Postgres R’s arima function
Execution Time (sec) 364.4 1391.9 1964.4
Iteration Number 29 29 N/A

Table 1: Here we compare the execution times of ARIMA model fitting in R and
in MADlib on Greenplum Database and PostgreSQL database. The time series
used to fit the ARIMA model has a length of 108. Note that running MADlib’s
ARIMA on Postgres is not only faster but also uses much less memory (0.1%).
Running this data set in R uses almost 70% of the machine’s memory (50G
memory). The iteration number for R is not available, because R’s ARIMA does
not output how many times it has iterated.

3.3 Sensitivity of number of segments

For MADlib’s ARIMA running on Greenplum database system, we also mea-
sured the execution time vs. the number of segments used, which is shown in
Fig. 4. Here, we use a time series with the length equal to 108. When the number



of segments is less than 32, then the execution time decreases as more segments
are added. However, increasing the number of segments beyond 32 will increase
the execution time due to the increasing communication overhead between seg-
ments.

3
5

0
4
0

0
4
5
0

5
0

0

8 16 32 48

Greenplum Database

(chunk size = 10
5
)

(time series length = 10
8
)

Segment Number

E
xe

c
u
ti
o

n
 T

im
e
 (

s
e
c
)

Fig. 4: We fit a time series with length of 108 using different numbers of segments
in Greenplum database system.

4 Discussion and Conclusion

The notable methods that we used in the implementation of ARIMA in MADlib
are: (1) split the data into chunks of consecutive data points and let each chunk
use the result of the previous chunk from the previous iteration to initialize the
calculation; (2) aggregate the chunk of data points into an array and redistribute
the aggregated chunks accross segments so that each chunk of data can be loaded
into memory and processed in one single function call by a segment. The first
method makes it possible to parallelize the algorithm, and the second method
greatly simplifies the implementation and improves the performance.

In this paper, we described our parallel implementation of ARIMA in MADlib
and showed significant runtime improvements compared to serial implementa-
tions. It is easy to see that the above two methods can be easily generalized
to other algorithms. The first method can be applied for any algorithm that
requires a global ordering of the data. The second method can be used for im-
proving the performance of any parallel algorithm. We aim to extend MADlib
by generalizing this solution to parallelize other time series analysis algorithms.



Bibliography

[1] Pivotal. http://gopivotal.com/, 2013.
[2] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii. Scalable

k-means++. Proceedings of the VLDB Endowment, 5(7):622–633, 2012.
[3] R. Bekkerman, M. Bilenko, and J. Langford. Scaling up machine learning: parallel

and distributed approaches. In Proceedings, 17th ACM SIGKDD Tutorials, KDD
’11 Tutorials, pages 4:1–4:1, 2011.

[4] G. E. Box and D. A. Pierce. Distribution of residual autocorrelations in
autoregressive-integrated moving average time series models. Journal of the Amer-
ican Statistical Association, 65(332):1509–1526, 1970.

[5] F. Chen, X. Feng, C. Ré, and M. Wang. Optimizing statistical information ex-
traction programs over evolving text. In Data Engineering (ICDE), 2012 IEEE
28th International Conference on, pages 870–881. IEEE, 2012.

[6] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and C. Welton. MAD skills: new
analysis practices for big data. Proceedings of the VLDB Endowment, 2-2:1481–
1492, 2009.

[7] D. Cox. Regression models and life-tables. Journal of the Royal Statistical Society.
Series B (Methodological), 34(2):187–220, 1972.

[8] X. Feng, A. Kumar, B. Recht, and C. Ré. Towards a unified architecture for in-
rdbms analytics. In Proceedings of the 2012 ACM SIGMOD International Con-
ference on Management of Data, pages 325–336. ACM, 2012.

[9] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek,
K. S. Ng, C. Welton, X. Feng, K. Li, and A. Kumar. The MADlib analytics library:
or MAD skills, the SQL. Proceedings of the VLDB, 5(12):1700–1711, 2012.

[10] C. Ordonez. Building statistical models and scoring with udfs. In Proceedings of
the 2007 ACM SIGMOD international conference on Management of data. ACM,
2007.

[11] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2013.

[12] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with
relational database systems: Alternatives and implications, volume 27. ACM, 1998.

[13] The Predictive Analytics Team at Pivotal Inc. Design document for MADlib.
http://madlib.net/design.pdf, 2013.

[14] The Predictive Analytics Team at Pivotal Inc. MADlib: An in-database analytics
platform. http://madlib.net, 2013.

[15] The Predictive Analytics Team at Pivotal Inc. PivotalR: An R
front-end to both GPDB/Postgres and MADlib. http://cran.r-
project.org/web/packages/PivotalR/, 2013.

[16] Z. A. Zhu, W. Chen, G. Wang, C. Zhu, and Z. Chen. P-packsvm: Parallel pri-
mal gradient descent kernel svm. In Data Mining, 2009. ICDM’09. Ninth IEEE
International Conference on, pages 677–686. IEEE, 2009.


